

SIDDHARTH INSTITUTE OF ENGINEERING & TECHNOLOGY :: PUTTUR Siddharth Nagar, Narayanavanam Road – 517583

OUESTION BANK (DESCRIPTIVE)

Subject with Code : Software Testing(20MC9119) Year & Sem: II & I Course & Branch: MCA Regulation: R20

<u>UNIT –I</u>

INTRODUCTION OF FLOW GRAPH AND PATH TESTING

1	Define integration testing. List and explain goals of integration testing.	[L1][CO1]	[12M]
2	Explain white-box testing and behavioral testing.	[L2][CO1]	[12M]
3	Discuss the following concepts. Model for Testing Path Predicates Path Sensitizing 	[L2][CO1]	[12M]
4	State and explain various dichotomies in software testing.	[L1][CO3]	[12M]
5	Illustrate about requirements, features and functionality bugs.	[L3][CO1]	[12M]
6	(a) Analyze the control and sequence bugs by explaining how they can be caught.	[L4][CO2]	[06M]
	(b) Explain achievable paths with suitable examples.	[L2][CO2]	[06M]
7	(a) Describe taxonomy of bugs.(b) Generate the goals for testing and model for testing in software testing.	[L2][CO2] [L5][CO2]	[06M] [06M]
8	 Summarize the following. i) The Consequences of Bugs ii) Testing and Design Style iii) The Role of Models iv) Pesticide Paradox 	[L6][CO1]	[12M]
9	(a) Contrast Interface, Integration and System Bugs.	[L4][CO1]	[06M]
	(b) Describe phases in tester's mental life and state Complexity Barrier.	[L2][CO1]	[06M]
10	Illustrate the application of Path Testing and Link Markers.	[L3][CO2]	[12M]

<u>UNIT –II</u>

TRANSACTION FLOW TESTING AND DATA FLOW TESTING

1	(a) Define transaction flow graph and explain with an example.	[L1][CO3]	[06M]
	(b) Illustrate all c-uses/some p-uses strategies and discuss all p-uses/some causes strategies.	[L3][CO3]	[06M]
2	(a) Explain births and mergers in a transaction flow testing.	[L2][CO1]	[06M]
	(b) Explain various loops with an example.	[L2][CO1]	[06M]
3	Discuss in detail data - flow testing strategies	[L2][CO3]	[12M]
4	Distinguish Control Flow and Transaction flow testing.	[L4][CO3]	[12M]
5	(a) Write about data-flow anomalies. How data flow testing can explore them.	[L3][CO1]	[06M]
	(b) State in details about the slicing and dicing. Discuss about static and dynamic program slicing.	[L1][CO3]	[06M]
6	Discriminate the terms Dicing, Data-flow and Debugging.	[L6][CO3]	[12M]
7	Explain data-flow testing with an example. Explain its generalizations and limitations.	[L5][CO6]	[12M]
8	Illustrate the Data-Flow Testing Strategies	[L3][CO3]	[12M]
9	Criticize motivation and assumptions of Data Flow Testing.	[L4][CO1]	[12M]
10	Summarize the transaction-flow testing techniques.	[L6][CO6]	[12M]

<u>UNIT-III</u>

DOMAIN TESTING

1	Interpret with example the equal - span range and domain compatibility bugs.	[L6][CO1]	[12M]
2	Discuss in detail about testability of Domains.	[L2][CO3]	[12M]
3	Explain in detail domain dimensionality.	[L2][CO3]	[12M]
4	(a) Write about nice - domain.	[L3][CO2]	[6M]
	(b) Give an example for nice two – dimensional domain.	[L3][CO2]	[6M]
5	Discuss in detail.	[L2][CO3]	[12M]
	i) Linear domain boundaries		
	ii) Non-linear domain boundaries		
	iii) Complete domain boundaries		
	iv) Incomplete domain boundaries		
6	Examine the various properties related to Ugly-domains.	[L4][CO3]	[12M]
7	State and explain various restrictions at domain testing processes.	[L1][CO2]	[12M]
8	(a) Summarize what is meant by domain testing.	[L6][CO5] [L6][CO5]	[6M] [6M]
	(b) Discuss the various applications of domain testing.		
9	With a neat diagram, explain the schematic representation of domain testing.	[L4][CO4]	[12M]
10	Explain how one-dimensional domains are tested.	[L5][CO3]	[12M]

UNIT-IV

PATHS, PATH PRODUCTS AND REGULAR EXPRESSIONS

1	(a) Explain Regular Expressions	[L2][CO1]	[6M]
	(b) Define Flow Anomaly detection.	[L2][CO1]	[6M]
2	Discuss with an example of Huang's theorem.	[L2][CO1]	[12M]
3	Evaluate the reduction procedure algorithm assuming an example.	[L6][CO2]	[12M]
4	Write Short Notes on:	[L3][CO3]	[12M]
	i) Distributive Laws		
	ii) Absorption Rule		
	iii) Loops		
	iv) Identity elements		
5	(a) Analyze about Path Sums	[L4][CO3]	[6M]
	(b) Explain Path Product.	[L4][CO3]	[6M]
6	Illustrate the applications of paths.	[L3][CO6]	[12M]
7	Justify "Whether the predicates are restricted to binary truth-values or not".	[L6][CO3]	[12M]
8	(a) State what is mean by decision tables	[L3][CO1]	[12M]
	(b) Illustrate the applications of decision tables with an example.	[13][001]	[121,1]
9	Explain how we can determine paths in domains in Logic based testing.	[L2][CO3]	[12M]
10	Summarize how the boolean expression can be used in test case design.	[L5][CO3]	[12M]

UNIT-V

STATE, STATE GRAPHS AND TRANSITION TESTING

1	The behavior of a finite state machine is invariant under all encodings. Justify.	[L6][CO5]	[12M]
2	Write and explain testers' comments about state graphs.	[L5][CO3]	[12M]
3	Analyze the types of bugs that can cause state graphs.	[L4][CO4]	[12M]
4	(a) List the principles of state testing.	[L1][CO3]	[6M]
	(b) Discuss its advantages and disadvantages of state testing.	[L1][CO3]	[6M]
5	Generate the design guidelines for building finite state machine into code.	[L5][CO4]	[12M]
6	Describe the software implementation issues in state testing.	[L2][CO4]	[12M]
7	Contrast about good state and bad state graphs.	[L4][CO3]	[12M]
8	Explain with an example how to convert specification into state-graph and how to handle contradictions.	[L2][CO2]	[12M]
9	Illustrate the following:	[L3][CO3]	[12M]
	i) Transition Bugs Dead States		
	ii) State Bugs		
	iii) Encoding Bugs		
10	(a) Describe about the graph matrices	[L6][CO6]	[6M]
	(b) Explain graph matrices applications.	[L6][CO6]	[6M]

Prepared by – Mr. R.Rekha,

Assitant Professor, Department of CSIT.